Хромосомные мутации синоним

111 синонимов к слову «МУТАЦИЯ» -  synonyms.su

  • О нас
  • Словарь антонимов
  • Словарь паронимов
  • Словарь ударений
  • Словарь морфологии
  • Словари
  • Регистрация
  • Вход

Введите слово и нажмите «Найти синонимы».

: — развитие — микромутация — создание — организация — оптимизация — изменение — увеличение — динамика…

Можно найти больше синонимов, нажимая на слова.

  • один

  • два

  • три

  • четыре

  • пять

5 (1)

Синоним Рейтинг
1 развитие[174]10 1
2 микромутация[1]10 1
3 создание[223]00 0
4 организация[319]00 0
5 оптимизация[110]00 0
6 изменение[152]00 0
7 увеличение[143]00 0
8 динамика[129]00 0
9 культура[168]00 0
10 повышение[143]00 0
11 тенденция[137]00 0
12 интерес[180]00 0
13 экспансия[99]00 0
14 модернизация[102]00 0
15 подход[136]00 0
16 образование[313]00 0
17 характер[141]00 0
18 этап[124]00 0
19 структурирование[102]00 0
20 возникновение[107]00 0
21 процедура[137]00 0
22 изготовление[141]00 0
23 изменения[147]00 0
24 движение вперед[102]00 0
25 переход[150]00 0
26 усиление[135]00 0
27 манипуляция[109]00 0
28 цивилизация[103]00 0
29 возрождение[120]00 0
30 преобразование[137]00 0
31 созидание[111]00 0
32 просвещение[104]00 0
33 упрощение[111]00 0
34 преемственность[106]00 0
35 составление[128]00 0
36 реконструкция[109]00 0
37 направленность[119]00 0
38 углубление[201]00 0
39 разделение[204]00 0
40 интенсификация[101]00 0
41 рационализация[101]00 0
42 улучшение качества[94]00 0
43 ориентация[115]00 0
44 прохождение[133]00 0
45 детализация[98]00 0
46 новаторство[107]00 0
47 взлет[118]00 0
48 постановка[119]00 0
49 эскалация[102]00 0
50 рождение[188]00 0
51 шаг вперед[111]00 0
52 реформа[116]00 0
53 экстраполяция[98]00 0
54 вариация[103]00 0
55 инверсия[102]00 0
56 конкретизация[100]00 0
57 доведение[103]00 0
58 зрелость[108]00 0
59 расцвет[104]00 0
60 развертывание[123]00 0
61 раскрутка[108]00 0
62 спецификация[102]00 0
63 поправка[115]00 0
64 устремленность[113]00 0
65 чередование[111]00 0
66 делание[117]00 0
67 пролонгация[104]00 0
68 зарабатывание[105]00 0
69 комплектование[107]00 0
70 возрастание[111]00 0
71 варьирование[97]00 0
72 продление[103]00 0
73 собирание[141]00 0
74 подготовленность[117]00 0
75 приумножение[105]00 0
76 раскручивание[108]00 0
77 видоизменение[112]00 0
78 переходный[115]00 0
79 удлинение[106]00 0
80 разрастание[111]00 0
81 пестование[102]00 0
82 перелицовка[110]00 0
83 перелом[29]00 0
84 сдвиги[113]00 0
85 ростов[134]00 0
86 вызревание[109]00 0
87 ходы[183]00 0
88 выделывание[108]00 0
89 мутант[8]00 0
90 разбухание[108]00 0
91 революционизирование[95]00 0
92 подъесть[171]00 0
93 подъевший[168]00 0
94 подъеденный[169]00 0
95 расплетение[98]00 0
96 выковывание[102]00 0
97 распрямление[101]00 0
98 расплетание[98]00 0
99 мутировать[5]00 0
100 макромутация[1]00 0
101 радиомутация[1]00 0
102 транслокация[2]00 0
103 инсерция[1]00 0
104 реверсия[7]00 0
105 аутомутация[1]00 0
106 трансверсия[2]00 0
107 миссенс-мутация[1]00 0
108 нонсенс-мутация[1]00 0
109 леталь[1]00 0
110 нуллисомия[1]00 0
111 перегласовка[4]00 0

Помогите найти больше синонимов к слову «мутация»

Добавить синоним

Частое повторение одинаковых слов (тавтология) делает речь скучной и однообразной. Спасти положение могут синонимы. Это слова, близкие по смыслу, но разные по звучанию. Используйте их, и ваши тексты станут ярче.

Если вам нужно подобрать синонимы к слову «мутация», вы попали по адресу. Мы постарались собрать все близкие по значению слова и словосочетания на этой странице и сделать доступными для использования. В русском языке в качестве синонимов к слову чаще всего используются: развитие, микромутация, создание. Всего в словаре 111 синонимов.

Слово «мутация» имеет как синонимы, так и антонимы. Они диаметрально противоположны по значению, но относятся к той же лексической группе и выполняют похожие функции в предложении.

Если вы часто ищите, чем заменить слово, добавьте synonyms.su в закладки. Это поможет сэкономить время и силы, избежать нелепых ошибок.

Рейтинг слова «мутация» :
00

Страница обновлена: 27.07.2019

Другие слова на букву м

Синонимы к словам и словосочетаниям на букву:

  • Средняя частота слова «мутация» 160. Количество букв: 7.
  • Искалась форма слова «мутация»
  • Поиск «мутация» занял 0.015 сек.
  • Добавьте synonyms.su в закладки ( нажав Ctrl+D ), чтобы найти Синонимы.

Добавление синонимов

captchaобновить

Добавить

Вверх ↑

Карта слов и выражений русского языка

Онлайн-тезаурус с возможностью поиска ассоциаций, синонимов, контекстных связей
и
примеров
предложений к словам и выражениям русского языка.

Справочная информация по склонению имён существительных и прилагательных,
спряжению
глаголов, а также
морфемному строению слов.

Сайт оснащён мощной системой поиска с
поддержкой русской морфологии.

Разбор слова
по составу ОНЛАЙН

Подобрать синонимы
ОНЛАЙН

Найти предложения со словом
или
выражением ОНЛАЙН

Поиск по произведениям русской классики
ОНЛАЙН

Словарь афоризмов русских писателей

мутация

мутация
мутация

перелом, нуллисомия, реверсия, изменение

Словарь русских синонимов.

мутация
сущ.

, кол-во синонимов: 10

Словарь синонимов ASIS.
.
2013.

.

Синонимы:

Полезное

Смотреть что такое «мутация» в других словарях:

  • МУТАЦИЯ — (лат.). Перелом голоса; переход из детского в возмужалый. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МУТАЦИЯ [лат. mutatio перемена, изменение] 1) биол. изменение наследственных структур, хранящих генетическую …   Словарь иностранных слов русского языка

  • МУТАЦИЯ — (от латинского mutatio изменение, перемена), возникающее естественно или вызываемое искусственно изменение наследственных свойств организма в результате нарушений в хромосомах и генах. Мутация основа наследственной изменчивости в живой природе. У …   Современная энциклопедия

  • МУТАЦИЯ — МУТАЦИЯ, внезапное изменение унаследованной характеристики организма. Мутации подвержены ДНК и ГЕНЫ. Естественная мутация, случающаяся в процессе воспроизводства, относительно редка, и пораженный ею организм, как правило, бывает неспособен выжить …   Научно-технический энциклопедический словарь

  • МУТАЦИЯ — (от лат. mutatio перемена, изменение). Под этим термином в генетике в настоящее время понимают всякое вновь возникающее в организме наследственное изменение. Однако различные исследователи придают этому слову не совсем одинаковый смысл. М. как… …   Большая медицинская энциклопедия

  • Мутация — (от латинского mutatio изменение, перемена), возникающее естественно или вызываемое искусственно изменение наследственных свойств организма в результате нарушений в хромосомах и генах. Мутация основа наследственной изменчивости в живой природе. У …   Иллюстрированный энциклопедический словарь

  • МУТАЦИЯ — изменения в генетическом материале организма, способные передаваться по наследству и выражающиеся внешне в изменениях физиологических, морфологических и других признаков. Экологический словарь, 2001 Мутация изменения в генетическом материале… …   Экологический словарь

  • мутация — естественно возникающие или вызываемые мутагенами изменения наследственных свойств организма, происходящие в результате нормальных перестроек (естественные М.) и нарушений (искусственные М.) в генетическом материале организма. (Источник:… …   Словарь микробиологии

  • МУТАЦИЯ — в музыке перелом голоса у подростков; из за роста гортани у мальчиков голос резко понижается в среднем на октаву, меняется его тембр …   Большой Энциклопедический словарь

  • МУТАЦИЯ — МУТАЦИЯ, мутации, жен. (лат. mutatio изменение) (научн.). 1. Всякое скачкообразное изменение явлений (научн.). 2. Внезапное появление какого нибудь нового биологического признака у животных или растений (биол.). Толковый словарь Ушакова. Д.Н.… …   Толковый словарь Ушакова

  • МУТАЦИЯ — МУТАЦИЯ, и, жен. (спец.). 1. Изменение наследственных свойств организма. 2. Перелом голоса у подростков. | прил. мутационный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

Все словари русского языка: Толковый словарь, Словарь синонимов, Словарь антонимов, Энциклопедический словарь, Академический словарь, Словарь существительных, Поговорки, Словарь русского арго, Орфографический словарь, Словарь ударений, Трудности произношения и ударения, Формы слов, Синонимы, Тезаурус русской деловой лексики, Морфемно-орфографический словарь, Этимология, Этимологический словарь, Грамматический словарь, Идеография, Пословицы и поговорки, Этимологический словарь русского языка.

мутация

Толковый словарь

I ж.

Внезапно возникающие естественные или вызываемые искусственно стойкие изменения наследственных структур живого организма, ответственных за хранение генетической информации (что может приводить к тяжёлым врождённым заболеваниям и уродствам).

II ж.

Изменение голоса у подростков, наблюдаемое с наступлением полового созревания.

Толковый словарь Ушакова

МУТА́ЦИЯ, мутации, жен. (лат. mutatio — изменение) (научн.).

1. Всякое скачкообразное изменение явлений (научн.).

2. Внезапное появление какого-нибудь нового биологического признака у животных или растений (биол.).

Толковый словарь Ожегова

МУТА́ЦИЯ, -и, жен. (спец.).

1. Изменение наследственных свойств организма.

2. Перелом голоса у подростков.

| прил. мутационный, -ая, -ое.

Популярный словарь

Мутация

-и, ж.

1) биол. Возникшее естественно или вызванное искусственно изменение наследственных свойств организма в результате перестроек или нарушений в его генетическом материале.

Генные мутации.

Хромосомные мутации.

2) Всякое скачкообразное изменение чего-л.

Мутация личности.

Мутация взглядов.

Мутация системы.

3) Перемена, перелом голоса у мальчиков-подростков (с наступлением половой зрелости).

Мутация голоса.

Родственные слова:

мута́нтный (мутантные клетки), мутацио́нный (мутационный процесс), мута́нт, мута́тор, мути́ровать

Этимология:

От немецкого Mutation ‘мутация’ (← лат. mutatio ‘изменение’, ‘перемена’). В русском языке — с начала ХХ в.

Энциклопедический комментарий:

Способность давать мутацию — мутировать — универсальное свойство всех форм жизни от вирусов и микроорганизмов до высших растений, животных и человека. Это свойство лежит в основе наследственной изменчивости в живой природе. Внезапное возникновение наследственных изменений отмечалось многими учеными XVIII и XIX вв., было хорошо известно Ч. Дарвину, но углубленное изучение мутаций началось лишь с зарождением на пороге ХХ в. экспериментальной генетики. «Мутация» как биологический термин был предложен в 1901 г. нидерландским ученым Х. Де Фризом.

Энциклопедический словарь

МУТА́ЦИЯ -и; ж. [от лат. mutatio — изменение, перемена]

1. Биол. Внезапно возникшее естественно или вызванное искусственно изменение наследственных свойств организма. Развитие мутации. М. под влиянием каких-л. факторов.

2. Перелом голоса у мальчиков-подростков с наступлением половой зрелости. М. голоса. Период мутации.

Мутацио́нный, -ая, -ое.

* * *

мута́ция (муз.), перелом голоса у подростков; из-за роста гортани у мальчиков голос резко понижается — в среднем на октаву, меняется его тембр.

* * *

МУТАЦИЯ — МУТА́ЦИЯ, в музыке — перелом голоса у подростков; из-за роста гортани (см. ГОРТАНЬ) у мальчиков голос резко понижается — в среднем на октаву, меняется его тембр (см. ТЕМБР) .

Большой энциклопедический словарь

МУТАЦИЯ — в музыке — перелом голоса у подростков; из-за роста гортани у мальчиков голос резко понижается — в среднем на октаву, меняется его тембр.

Академический словарь

-и, ж.

1. Всякое скачкообразное изменение чего-л.

2. биол.

Внезапно возникшее наследственное изменение в свойствах и признаках организма.

3. Перемена, перелом голоса у мальчиков-подростков с наступлением половой зрелости.

[От лат. mutatio — изменение, перемена]

Иллюстрированный энциклопедический словарь

МУТАЦИЯ (от латинского mutatio — изменение, перемена), возникающее естественно или вызываемое искусственно изменение наследственных свойств организма в результате нарушений в хромосомах и генах. Мутация — основа наследственной изменчивости в живой природе. У человека мутация — причина многих наследственных болезней и уродств. Для селекции и эволюции важны редкие мутации с благоприятными изменениями.

Орфографический словарь

Словарь ударений

Формы слов для слова мутация

мута́ция, мута́ции, мута́ций, мута́циям, мута́цию, мута́цией, мута́циею, мута́циями, мута́циях

Синонимы к слову мутация

сущ., кол-во синонимов: 10

перелом, нуллисомия, реверсия, изменение

Пятиязычный словарь лингвистических терминов

Морфемно-орфографический словарь

Грамматический словарь

Педагогическое речеведение

Мутация (лат. mutatio — изменение, перемена) — перестройка работы голосового аппарата у подростков в период полового созревания. М. обусловлена анатомическими и эндокринными изменениями в организме. (См. также детский голос.)

Лит.: Вильсон Д.К. Нарушения голоса у детей. — М., 1990; Максимов И. Фониатрия. — М., 1987.

А.А. Князьков

Словарь иностранных слов

МУТАЦИЯ (лат.). Перелом голоса; переход из детского в возмужалый.

Сканворды для слова мутация

— Перелом голоса у подростков из-за роста гортани.

— Что превращает мальчиковый голос в мужественный?

— Изменения в наследственности животных, человека.

— Изменение организма.

— Изменение голоса у мальчиков.

— Неожиданное стойкое изменение.

Полезные сервисы

мутация вокалическая

Пятиязычный словарь лингвистических терминов

Полезные сервисы

мутация консонантная

Пятиязычный словарь лингвистических терминов

Полезные сервисы

Chromosome mutations are caused by rearrangements in the structure of a chromosome, such as translocations or deletions.

From: Human Genes and Genomes, 2012

Methodological Aspects on the Estimation of Genetic Effects of Environmental Agents in Man

N. Ryman, J. Lindsten, in Advances in Metabolic Disorders, 1974

2 Chromosome Mutations

Different types of chromosome mutations can originate in the germinal cells. Nonreduction of the whole chromosome set will lead to polyploid gametes, and nondisjunction of single chromosomes leads to aneuploidy and chromosome breakage to structural chromosome aberrations. These three types of events have probably different mechanisms of origin. Therefore, the assumption seems likely that a given agent will mainly induce only one of these types of mutations.

Direct cytological observations on germ-line cells would theoretically give information on the frequency of the different types of chromosome abnormalities. Meiotic studies are inexpensive and also have the advantage that only a few exposed subjects have to be studied. However, a number of difficulties are involved in such studies. First, analyses of the meiotic chromosomes are limited to men. Testicular biopsies containing a large number of dividing cells can easily be obtained whereas the access to egg cells is very limited. Second, many meiotic stages are extremely difficult to analyze with available cytogenetic techniques. The easiest stages to study are diakinesis to first metaphase, but it is sometimes difficult to identify a structural chromosome aberration known to be present in all cells even in these stages (Fig. 5). Third, the sensitivity of this method is not yet known in man, not even for ionizing irradiation. Such data are difficult to obtain, since doses large enough for establishing a dose-effect relationship are generally only given to very diseased subjects. Large doses will probably also depress spermatogenesis considerably for a variable period of time. Furthermore, studies in the mouse have shown that several agents known to be potent mutagens do not give an increased frequency of abnormal meiotic chromosomes (Schleiermacher, 1970; Leonard et al., 1971; Leonard and Linden, 1972). Thus, further studies are needed in order to evaluate to which extent an analysis of the meiotic chromosomes might be a useful tool for the estimation of the chromosome mutation frequency.

FIG. 5. (a) Mitotic karyotype from a male subject with a balanced translocation between two long acrocentric chromosomes (arrow), (b) Multivalent (arrow) in the first meitoic division indicating the existence of balanced translocation between two nonhomologous acrocentric chromosomes. The number of chromosome structures is 22. (c) Absence of a multivalent in the first meiotic division in a subject with the same type of translocation but between homologous chromosomes. Note that the number of chromosome structures is normal (23). (d) First meiotic division from a normal male. Twenty-three chromosome structures.

An abnormal chromosome constitution induced in a germinal cell might be transferred to the offspring. Screening for newborns with congenital chromosome abnormalities can therefore be used to estimate the chromosome mutation frequency. It is known from the general population that the incidence of newborns with an aneuploid chromosome constitution is about 0.34%, and with a structural chromosome aberration about 0.11-0.18% (reviews in Jacobs et al., 1972; Wright et al., 1972). Most, but not all, of the aneuploid cases probably have a similar mechanism of origin. Under this assumption it might be asked how many newborns have to be cytogenetically analyzed if we want to detect a doubling of the frequency of this type of chromosome mutation. Figure 6 shows the number of children which must be analyzed if we want to demonstrate that the incidence of children with congenital chromosome aberrations are statistically different in two populations. As seen from the figure, about 6250 newborns are required from each population for detection of a significant difference between the incidences 0.5 and 1% with 90% probability. In Sweden this would correspond to two populations of about 375,000 inhabitants. Monitoring of the population with regard to congenital chromosome aberrations is by no means an impossible task, since a chromosome analysis is a rather simple procedure. Furthermore, methods for automatic screening and anlysis of cells might be available in the near future, which would make it easier to carry out such a program. It should be kept in mind that a doubling of the chromosome mutation frequency is a very serious situation. However, still larger populations have to be studied if smaller increases are to be detected. Thus, the mutation frequency must increase very much in a small population to be detectable.

FIG. 6. Graphs showing the sample sizes needed to detect a statistically significant frequency difference (α = 0.05 and 1 — β = 0.90) between two populations. n1 and n2 are the sample sizes needed from two populations with the true frequencies P1 and p2, respectively. The values for p1 and p2 have been selected as explained in the text.

Another type of material that can be used for cytogenetic monitoring is spontaneous abortions. About 20% of all spontaneous abortions occurring during the first 5 months of pregnancy, and 35% of the first trimester abortions, have been reported to have a chromosome anomaly, generally polyploidy, autosomal trisomy, and monosomy X (review in Carr, 1971). However, recent studies have shown that this latter figure might be as high as 50-60% (Therkelsen et al., 1973). As seen from Fig. 7 the sample sizes needed to demonstrate an increase in the incidence of a particular type of chromosome abnormality in spontaneous abortions from 10 to 20% with 90% probability, would be about 200 abortuses from each population.

FIG. 7. Graphs showing the sample sizes (n) needed to detect a statistically significant difference (α = 0.05 and 1 — β = 0.90) between two populations one with the frequency p1 the other with p2. The graphs have been made for two values for p1 0.1 and 0.3, respectively. For further explanation see text.

The difficulties involved in a cytogenetic screening program of newborns and spontaneous abortions are both of practical and theoretical nature. The practical problems are mainly concerned with the collection of material and with the costs, while the theoretical problems concern the interpretation of the incidence figures. The practical difficulties can be overcome, but the interpretation of the incidence figures requires some further comments. It is well known that maternal age at conception is of etiological importance for several of the chromosome abnormalities. An unchanged incidence of children with chromosome aberrations might therefore be due to a balance between, for instance, a decreasing maternal age on one hand and an increased chromosome mutation frequency on the other. Furthermore, incidence variations with season and socioeconomic class have been reported (Nielsen and Friedrich, 1969; Robinson et al., 1969), and all these factors have to be taken into consideration in evaluation of the data.

Thus, a number of problems are involved in the estimation of changes in both the gene and chromosome mutation frequencies in germinal cells. Even if these problems can be overcome, the question of what might have caused a registered change in the mutation frequency remains to be elucidated. This might turn out to be an almost unsolvable problem, even if retrospective studies sometimes might give hints with regard to the etiological factor (s) involved.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780120273072500086

Pathophysiology, Pharmacology, and Biochemistry of Dyskinesia

Matthew J. Barrett, Susan Bressman, in International Review of Neurobiology, 2011

2 DYT6 Dystonia

DYT6 maps to chromosome 8p and mutations are inherited in an autosomal dominant pattern with reduced penetrance (Almasy et al., 1997). The gene for DYT6, THAP1, was first identified in Amish Mennonite families (Fuchs et al., 2009), whose causative mutation is a 5-base pair (GGGTT) insertion followed by a 3-base pair deletion (AAC) (c.135_139delinsGGGTTTA) in exon 2. This mutation results in a frame shift at amino acid 44 and a premature stop codon at position 73. THAP1 mutations as a cause of PTD were initially thought to be restricted to related Amish Mennonite families, but different THAP1 mutations in families with diverse ancestries have now been identified (Bonetti et al., 2009; Bressman et al., 2009; Djarmati et al., 2009; Houlden et al., 2010; Schneider et al., 2009). In a clinically restricted group of non-DYT1 families with early-onset nonfocal PTD, 25% were found to have a THAP1 mutation (Bressman et al., 2009; Djarmati et al., 2009; Schneider et al., 2009). However, only 4.5% of a Dutch dystonia cohort with early-onset PTD and 2.5% of a British dystonia cohort with a variety of phenotypes were found to have THAP1 mutations (Groen et al., 2010; Ritz et al., 2010). In addition to generalized dystonia, a small number of adult-onset focal cervical and laryngeal dystonia patients were found to have THAP1 single base-pair substitutions (Xiao et al., 2010).

Despite the diversity of mutations and ancestries, there is phenotypic similarity among cases. DYT6 dystonia usually begins in an arm, the neck, or other cranial muscles with two thirds eventually having involvement of the cranial muscles and impairment of speech. Symptom onset is typically early, but a significant proportion has symptoms begin after age 18 years.

THAP1 contains a highly conserved THAP domain at the N-terminus and a nuclear localization domain at its C-terminus. THAP domains are atypical zinc fingers responsible for sequence-specific DNA binding, and THAP1 regulates many proteins involved in endothelial cell proliferation (Cayrol et al., 2007). Two recent studies demonstrated that THAP1 also interacts with the TOR1A promoter region. Thus, THAP1 mutations may lead to dystonia by transcriptional dysregulation of TOR1A. This interaction suggests that DYT1 and DYT6 dystonia share a common pathogenetic pathway (Gavarini et al., 2010; Kaiser et al., 2010).

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123813282000195

Homology Effects

James A. Kennison, Jeffrey W. Southworth, in Advances in Genetics, 2002

C. The cubitus interruptus gene and the “Dubinin” effect

Dubinin and Sidorov (1934a, 1934b) described a genetic phenomenon involving the fourth chromosome mutation cubitus interruptus (ci). This is sometimes called the “Dubinin” effect (Lewis, 1950). Dubinin and Sidorov crossed 19 translocations involving the fourth chromosome to the recessive ci mutation. Ten of these translocations failed to completely complement the ci mutation, that is, the ci mutation behaved as a dominant when heterozygous to the translocations. Dubinin (1935) and Sturtevant and Dobzhansky (Dobzhansky, 1936) tested another 29 translocations, of which 12 also failed to complement the ci mutation. Flies homozygous for some of these translocations could be recovered; the homozygotes did not have a ci mutant phenotype, suggesting that the ci gene was not mutated on the translocation chromosomes (Dubinin and Sidorov, 1934b). Several of the translocations were also examined in haplo-IV flies that had only the translocated fourth chromosome (the fourth chromosome is small enough that these aneuploids survive). Again, if the ci gene in the translocated chromosome were altered, these flies were expected to have the ci mutant phenotype; they did not (Dubinin and Sidorov, 1934b). Sidorov (1941) and Stern and Heidenthal (1944) irradiated chromosomes carrying the ci mutation and recovered translocations carrying the ci mutation in cis. Many of these translocations behaved as though they now carried a dominant ci mutation, i.e., flies heterozygous for a translocation often had a ci mutant phenotype, even though they carried a wild-type ci allele on the normal fourth chromosome. The recessive ci mutation became dominant when the fourth chromosome carrying it was involved in a translocation. Although Ephrussi and Sutton (1944) pointed out that these results suggested a role for chromosome pairing in the phenomenon, the effects of translocations on ci expression continued to be primarily cited as an example of a position effect. Although studied extensively by Stern and his colleagues (Stern and Heidenthal, 1944; Stern et al., 1946a, 1946b; Stern and Kodani, 1955), a simple model to explain the results remained elusive.

A simple explanation for the Dubinin effect was finally proposed by Locke and Tartof (1994). They proposed that the recessive ci mutation is not a loss-of-function mutation, but causes misexpression of the ci gene due to loss or inactivation of a negative cis-regulatory element. When able to pair with a wildtype ci gene, the negative cis-regulatory element in the wild-type gene can repress the mutant ci gene in trans. Disruption of pairing in translocation heterozygotes (which should be independent of whether the ci mutation is carried by the wildtype or translocated chromosome) prevents the negative cis-regulatory element of the wild-type gene from repressing in trans. The ci mutant gene is derepressed, causing the ci mutant phenotype. Molecular and developmental analyses support this model. The ci phenotype of recessive ci mutations does appear to result from derepression of the ci gene (Schwartz et al., 1995; Slusarski et al., 1995). Recessive ci mutations map to a region upstream of the ci transcription unit that includes a cis-regulatory element that can repress a reporter gene in a transgenic assay (Locke and Tartof, 1994; Schwartz et al., 1995; Slusarski et al., 1995).

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/S0065266002460142

Global Developmental Delay and Intellectual Disability

Elliott H. Sherr, Michael I. Shevell, in Swaiman’s Pediatric Neurology (Sixth Edition), 2017

Other X-Linked ID Conditions

The increased prevalence of ID in males and the relative ease of detecting familial transmission of X-chromosome mutations have led to the discovery of novel ID genes on the X chromosome. Since the early 1990s, more than 120 genes have been identified as causes of X-chromosome-linked syndromic and nonsyndromic ID (Table 51-4).

Mechanistically some of these genes work directly at the level of the synapse. For example, the protein family neuroligin on the postsynaptic membrane (with two X-linked neuroligin genes [NLGN3 and NLGN4]), and its binding partner neurexin on the presynaptic side have been shown to promote synapse formation in vitro. Similarly, multiple genes that participate in signaling at the synapse through the small G protein RHO are mutated in many cases of X-linked ID: GDI1, PAK3, OPHN1, and ARHGEF6. There are also many genes without synaptic function that are well-established causes of ID, such as the genes ARX and MECP2. These genes can cause syndromic ID (as in patients with X-linked lissencephaly with ambiguous genitalia [XLAG] and Rett’s syndrome) and nonsyndromic ID, depending on the severity of the mutation. These observations demonstrate the complexity of understanding how genetic alteration causes mental retardation, what form it takes, and how genotype may correlate with phenotype.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780323371018000515

The Occupation of Southeast Asia, Indonesia, and Australia

Rene J. Herrera, Ralph Garcia-Bertrand, in Ancestral DNA, Human Origins, and Migrations, 2018

Continuity of Genetic Traits

In a comprehensive genetic assessment of 12,127 contemporary male individuals representing 163 East Asian populations, three Y chromosome mutations (YAP+, M89T, and M130T) were associated with a fourth mutation M168T, which originated in Africa approximately 35–89 kya. In this study, no input from East Asia was detected and the dispersal eastward points to a relative recent migration. These results are congruent with a recent out of Africa migration.84 Yet, not all the genetic data available is consistent with a recent out of Africa migration of AMHs giving rise to all human populations worldwide. For example, in a study of 15 DNA sequences on the X chromosome, it was found that the DNA sites date back to various times and not a single time as expected by the single origin theory. Some of these DNA sites date back to about 2.0 mya when erectus originated in Africa.85 These results also suggest that a population separation occurred at the time of erectus and not a recent split of sapiens as predicted by the Out of Africa theory. Furthermore, some of the DNA sequences exhibit more diversity in Asia, not in Africa as expected by the Out of Africa model. Greater variability is generally considered diagnostic of regions of origin because diversity is generated as a function of time; older locations possess more diversity.

A number of other sites distributed throughout the sapiens DNA also indicate inconsistencies with the notion that AMHs recently and uniquely originated in Africa in the absence of introgression. These studies point to old separation times of human populations dating to the origins of erectus in Africa.86 Included among these deep-rooted diagnostic DNA locations are a ribonucleotide reductase (RRM2) gene, the microtubule-associated protein tau (MAPT) gene, an acetylneuraminic acid hydroxylase (CMP-N) gene, and a pyruvate dehydrogenase (PDHA1) gene. All of these studies are contradictory to the seminal mtDNA data that support a recent single Out of Africa dispersal. In addition, the notion of a recent single dispersion Out of Africa was challenged when 34 unique migration events involving Africa and Eurasia were detected by statistical analyses of genes. Nineteen of the thirty-four DNA sequences indicated that the gene flow occurred approximately 1.46 mya, three are correlated with the erectus migration out of Africa about 2.0 mya, only five were related to a recent expansion Out of Africa, and seven took place at intermediate time periods. In this study, the single migration from Africa with replacement was soundly negated with greater than 99% confidence.87

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780128041246000082

Biodiversity, Definition of

Ian R. Swingland, in Encyclopedia of Biodiversity (Second Edition), 2013

Genetic Diversity

Genetic diversity is reliant on the heritable variation within and between populations of organisms. New genetic variation arises in individuals by gene and chromosome mutations, and in organisms with sexual reproduction it can be spread through the population by recombination. It has been estimated that in humans and fruit flies alike, the number of possible combinations of different forms of each gene sequence exceeds the number of atoms in the universe. Other kinds of genetic diversity can be identified at all levels of organization, including the amount of DNA per cell and chromosome structure and number. Selection acts on this pool of genetic variation present within an interbreeding population. Differential survival results in changes of the frequency of genes within this pool, and this is equivalent to population evolution. Genetic variation enables both natural evolutionary change and artificial selective breeding to occur (Thomas, 1992).

Only a small fraction (<1%) of the genetic material of higher organisms is outwardly expressed in the form and function of the organism; the purpose of the remaining DNA and the significance of any variation within it are unclear (Thomas, 1992). Each of the estimated 109 different genes distributed across the world’s biota does not make an identical contribution to overall genetic diversity. In particular, those genes that control fundamental biochemical processes are strongly conserved across different taxa and generally show little variation, although such variation that does exist may exert a strong effect on the viability of the organism; the converse is true of other genes. A large amount of molecular variation in the mammalian immune system, for example, is possible on the basis of a small number of inherited genes (Thomas, 1992).

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123847195000095

ENCEPHALOPATHIES

Juan M. Pascual, in Neurology and Clinical Neuroscience, 2007

Phenylketonuria

Classic phenylketonuria (PKU) is caused by near-complete deficiency of phenylalanine hydroxylase activity leading to hyperphenylalaninemia. The phenylalanine hydroxylase gene, PAH, is located in chromosome 12 and mutations in PAH are inherited in an autosomal recessive fashion. PKU was the first metabolic cause of mental retardation to be identified and is routinely screened for in all newborns.40,41 It is also an example of a disorder fully treatable by dietary restriction. A small proportion of infants with hyperphenylalaninemia have an underlying impaired synthesis or recycling of tetrahydrobiopterin (BH4) in the presence of a normal PAH gene, a condition that is independently treatable.42 Classic untreated PKU leads to microcephaly, epilepsy, and severe intellectual and behavioral disabilities. The excretion of excessive phenylalanine and its metabolites can confer a musty odor to the skin, and the associated inhibition of tyrosinase causes decreased skin and hair pigmentation. Patients also exhibit decreased myelin formation and deficient production of dopamine, norepinephrine, and serotonin. Motor disability can be prominent later in life. Untreated maternal PKU can produce congenital heart disease, intrauterine and postnatal growth retardation, microcephaly, and mental retardation in the offspring. The diagnosis is based on plasma phenylalanine measurement and DNA sequence analysis. Prenatal diagnosis using amniocytes is available. PKU treatment consists of dietary restriction of phenylalanine.43 A fraction of patients with primary phenylalanine hydroxylase deficiency respond to the 6R-BH4 isomer, which may act by enhancing residual enzyme function.44

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780323033541501115

Metabolic Diseases of the Nervous System

Juan M. Pascual, in Molecular Neurology, 2007

IX. Phenylketonuria

Classic phenylketonuria (PKU) is caused by near-complete deficiency of phenylalanine hydroxylase activity leading to hyperphenylalaninemia. The phenylalanine hydroxylase gene, PAH, is located in chromosome 12 and mutations in PAH are inherited in an autosomal recessive fashion. Over 250 missense mutations have been identified in the three domains (catalytic, regulatory, and tetramerization) of PAH (see Figure 10.5). PAH is assembled as a tetramer and as a dimer that coexist in interchangeable equilibrium. Each subunit contains an iron atom at the catalytic site. PKU mutations alter residues located at several enzyme regions: the active site, structural residues, residues involving interdomain interactions in a monomer, residues that interact with the N-terminal autoregulatory sequence that extends over the active site in the catalytic domain, and residues at the dimer or tetramer interface regions of the structure.

Figure 10.5. C alpha trace of a monomer of PAH. The trace is shaded for regions containing PKU mutations. The active site iron is represented as a sphere.

From: Erlandsen &amp; Stevens (1999).Copyright © 1999

PKU was the first metabolic cause of mental retardation to be identified and is routinely screened for in all newborns. It is also an example of a disorder fully treatable by dietary restriction. A small proportion of infants with hyperphenylalaninemia display impaired synthesis or recycling of tetrahydrobiopterin (BH4) in the presence of a normal PAH gene, a condition that is independently treatable (Blau & Erlandsen, 2004). Classical untreated PKU leads to microcephaly, epilepsy, and severe intellectual and behavioral disabilities. The excretion of excessive phenylalanine and its metabolites can confer a musty odor to the skin, and the associated inhibition of tyrosinase causes decreased skin and hair pigmentation. Patients also exhibit decreased myelin formation and deficient production of dopamine, norepinephrine, and serotonin. Motor disability can be prominent later in life. Untreated maternal PKU can produce congenital heart disease, intrauterine and postnatal growth retardation, microcephaly, and mental retardation in the offspring. The diagnosis is based on plasma phenylalanine measurement and DNA sequence analysis. Prenatal diagnosis using amniocytes is available. PKU treatment consists of dietary restriction of phenylalanine. A fraction of patients with primary phenylalanine hydroxylase deficiency respond to BH4, which may act by enhancing residual enzyme function (Blau & Scriver, 2004). It is believed that the BH4 responsive form of PKU is caused by mutations that affect the enzyme Km by altering the binding affinity of BH4.

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123695093500123

Central Nervous System Tumors

MAHLON D. JOHNSON, JAMES B. ATKINSON, in Modern Surgical Pathology (Second Edition), 2009

MOLECULAR BIOLOGY

During transformation to anaplastic forms, in addition to losses on chromosomes 1p and 19q, oligodendrogliomas accumulate losses on chromosome 9p (including the CDKN2A region), losses on chromosome 10q, and mutations of the p53 gene.119,120 LOH at 1p and 19q predicts a durable response to PCV or temozolomide therapy as well as prolonged survival. Even a partial oligodendroglial component in a mixed oligoastrocytoma improves the response to therapy as well as survival compared with pure astrocytomas.135,137,138 Similarly, recent studies by Zlatescu140 and Mueller141 and their respective colleagues demonstrate a molecular genetic dichotomy in the distribution of oligodendroglial tumors of the cerebral hemispheres. Extratemporal oligodendrogliomas and oligoastrocytomas are more likely to have LOH at 1p and 19q and a normal p53 than are tumors found in the temporal lobes.140,141

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9781416039662000515

Mutation

Leon E. Rosenberg, Diane Drobnis Rosenberg, in Human Genes and Genomes, 2012

Categories and Frequencies

Three categories of mutations exist (Table 8.1): those that alter the number of chromosomes in the cell (genome mutations); those that alter the structure of single chromosomes (chromosome mutations); and those that alter individual genes (gene mutations). Genome mutations are the most common, occurring as often as 4 × 10−2 per meiotic cell division. Chromosome mutations are about 100 times less common (6 × 10−4/cell division). Gene mutations take place in about 10−10 per base pair per cell division or 10−5 to 10−6 per locus per generation (four orders of magnitude less frequent than chromosome mutations.) Genome and chromosome mutations will be discussed further in Chapter 11. Gene mutations will be detailed here and in Chapter 12.

TABLE 8.1. Categories and Frequencies of Human Mutations

Category Mechanism Frequency
Genome Chromosome missegregation 2 to 4 × 10−2 per cell division
Chromosome Chromosome rearrangement 6 × 10−4 per cell division
Gene Base pair change 10−10 per base pair per cell division
10−5 to 10−6 per locus per cell division

Read full chapter

URL: 

https://www.sciencedirect.com/science/article/pii/B9780123852120000081

Понравилась статья? Поделить с друзьями:
  • Хрумкать синоним
  • Хромой человек синоним
  • Хронометрирование синоним
  • Хронометраж времени синоним
  • Хронометр синоним